Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(6): 6958-6970, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306454

RESUMO

This study presents a novel synthesis of self-standing MoP and Mo2N heterostructured electrocatalysts with enhanced stability and catalytic performance. Facilitated by the controlled phase and interfacial microstructure, the seamless structures of these catalysts minimize internal resistivity and prevent local corrosion, contributing to increased stability. The chemical synthesis proceeds with an etching step to activate the surface, followed by phosphor-nitriding in a chemical vapor deposition chamber to produce MoP-Mo2N@Mo heterostructured electrocatalysts. X-ray diffraction analyses confirmed the presence of MoP, Mo2N, and Mo phases in the electrocatalyst. Morphology studies using scanning electron microscopy characterize the hierarchical growth of structures, indicating successful formation of the heterostructure. X-ray photoelectron spectroscopy (XPS) analyses of the as-synthesized and postcatalytic activity samples reveal the chemical shift in terms of the binding energy (BE) of the Mo 3d XPS peak, especially after catalytic activity. The XPS BE shifts are attributed to changes in the oxidation state, electron transfer, and surface reconstruction during catalysis. Electrochemical evaluation of the catalysts indicates the superior performance of the MoP-Mo2N@Mo heterostructured catalyst in hydrogen evolution reactions (HER), with lower overpotentials and enhanced Tafel slopes. The stability tests reveal changes in double layer capacitance over time, suggesting surface reconstruction and an increased active surface area during catalysis. Operando electrochemical impedance spectroscopy (EIS) further elucidates the dynamic changes in resistance and charge transfer during HER. Overall, a comprehensive understanding of the synthesis, characterization, and electrochemical behavior of the developed MoP-Mo2N@Mo heterostructured electrocatalyst, as presented in this work, highlights its potential utilization in sustainable energy applications.

2.
ACS Appl Mater Interfaces ; 15(5): 7518-7528, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36715357

RESUMO

Charge transfer across the electrode-electrolyte interface is a highly complex and convoluted process involving diverse solvated species with varying structures and compositions. Despite recent advances in in situ and operando interfacial analysis, molecular specific reactivity of solvated species is inaccessible due to a lack of precise control over the interfacial constituents and/or an unclear understanding of their spectroscopic fingerprints. However, such molecular-specific understanding is critical to the rational design of energy-efficient solid-electrolyte interphase layers. We have employed ion soft landing, a versatile and highly controlled method, to prepare well-defined interfaces assembled with selected ions, either as solvated species or as bare ions, with distinguishing molecular precision. Equipped with precise control over interfacial composition, we employed in situ multimodal spectroscopic characterization to unravel the molecular specific reactivity of Mg solvated species comprising (i.e., bis(trifluoromethanesulfonyl)imide, TFSI-) anions and solvent molecules (i.e., dimethoxyethane, DME/G1) on a Mg metal surface relevant to multivalent Mg batteries. In situ multimodal spectroscopic characterization revealed higher reactivity of the undercoordinated solvated species [Mg-TFSI-G1]+ compared to the fully coordinated [Mg-TFSI-(G1)2]+ species or even the bare TFSI-. These results were corroborated by the computed reaction pathways and energy barriers for decomposition of the TFSI- within Mg solvated species relative to bare TFSI-. Finally, we evaluated the TFSI reactivity under electrochemical conditions using Mg(TFSI)2-DME-based phase-separated electrolytes representing different solvated constituents. Based on our multimodal study, we report a detailed understanding of TFSI- decomposition processes as part of coordinated solvated species at a Mg-metal anode that will aid the rational design of improved sustainable electrochemical energy technologies.

3.
Small ; 18(34): e2202648, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35900063

RESUMO

The enhanced safety, superior energy, and power density of rechargeable metal-air batteries make them ideal energy storage systems for application in energy grids and electric vehicles. However, the absence of a cost-effective and stable bifunctional catalyst that can replace expensive platinum (Pt)-based catalyst to promote oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air cathode hinders their broader adaptation. Here, it is demonstrated that Tin (Sn) doped ß-gallium oxide (ß-Ga2 O3 ) in the bulk form can efficiently catalyze ORR and OER and, hence, be applied as the cathode in Zn-air batteries. The Sn-doped ß-Ga2 O3 sample with 15% Sn (Snx =0.15 -Ga2 O3 ) displayed exceptional catalytic activity for a bulk, non-noble metal-based catalyst. When used as a cathode, the excellent electrocatalytic bifunctional activity of Snx =0.15 -Ga2 O3 leads to a prototype Zn-air battery with a high-power density of 138 mW cm-2 and improved cycling stability compared to devices with benchmark Pt-based cathode. The combined experimental and theoretical exploration revealed that the Lewis acid sites in ß-Ga2 O3 aid in regulating the electron density distribution on the Sn-doped sites, optimize the adsorption energies of reaction intermediates, and facilitate the formation of critical reaction intermediate (O*), leading to enhanced electrocatalytic activity.

4.
ACS Appl Mater Interfaces ; 14(16): 19031-19042, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35420797

RESUMO

Functionalization of graphene oxide (GO) membranes is generally achieved using carboxyl groups as binding sites for ligands. Herein, by taking advantage of the ability of imidazolium-based ionic liquids (ILs) to undergo an epoxide ring-opening reaction, a new approach of GO modification was established, in which ILs were bonded to the abundant epoxides on GO without sacrificing the carboxyl groups. Computational methods confirmed this unique configuration of ILs on GO, which enabled the dispersion of IL/GO flakes in water for facile casting into laminate membranes. Compared with neat GO, the ILs in IL/GO membranes served as spacers that substantially reduced the multi-valent cation mobility, simultaneously facilitated ion desolvation, and increased the water flux across the membrane. Our studies found that the higher separation efficiency of IL/GO membranes may be attributed to the synergistic modification of the hydrophobicity and surface charge. Specifically, the protonated nitrogen of the imidazolium cations altered the surface charge of GO, thereby generating electrostatic repulsion that enhanced the selectivity of cation rejection. On the other hand, the increased length of the alkyl chains bound to the imidazolium rings was found to increase the hydrophobicity of GO, which, in turn, aided the fine-tuning of the water desolvation/transport dynamics at the GO/IL interface to achieve a high water flux. Additionally, the water retention was reduced on the hydrophobic planes, which inhibited GO swelling during aqueous separations. Molecular dynamics simulations revealed increased water diffusivity when ILs were intercalated within GO layers. We establish that without requiring a high energy input, functionalization of GO membranes with ILs may be a promising approach to achieve efficient ion separation and critical material recovery.

5.
Anal Chem ; 94(4): 2072-2077, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044160

RESUMO

This work describes the first exploration of metal-organic frameworks (MOFs) as "next-generation" ion emitters for thermal ionization mass spectrometry (TIMS). MOFs were identified as promising candidates for this application given the synthetic control over their desired structural properties. This tunability results in well-ordered, high-surface-area, high-porosity frameworks with targeted sorption affinities. Here, we explored an aluminum-based, bipyridine-containing MOF (MOF-253) with and without incorporating a high work function metal, rhenium (Re). After analysis of an Nd-bearing MOF, we hypothesized that the well-dispersed, sponge-like interconnected network of the degraded structure would enhance Nd ionization more than traditional TIMS loading techniques (i.e., phosphoric acid). Compared to filaments loaded with phosphoric acid that require an additional benzene carburization step, the Nd ionization efficiencies (atoms detected relative to atoms loaded) for heated filaments loaded with MOF-253 were similar (∼1%). Electron microscopy after TIMS analysis demonstrated that the MOF was retained on the filament. While these results are preliminary, they demonstrate that MOFs have potential to enhance ionization and exceed the performance of traditional loading techniques by forming nanoporous ion emitters. Thus, further experimentation is likely to exceed this performance through more specific selection of the base MOF structure and modifications to porosity and composition. This work represents a novel application of MOFs and a next step in the pursuit of advanced thermal ionization with potential to expand across the periodic table.


Assuntos
Estruturas Metalorgânicas , Alumínio , Espectrometria de Massas , Estruturas Metalorgânicas/química , Metais , Porosidade
6.
ACS Appl Mater Interfaces ; 13(45): 54266-54273, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34751026

RESUMO

Although traditional commercially available porous carbon-fluorocarbon working pairs have shown promising applicability for adsorption cooling, advancements in engineered carbons may further improve the performance. Moreover, insights into structure-property relationships that target higher sorption capacities within these synthesized carbons may guide such materials' future design. We utilized hierarchically porous carbons (HPCs), synthesized with colossal microporous and mesoporous content characterized by high surface areas (up to 2689 m2/g) and pore volume values (up to 10.31 cm3/g) toward fluorocarbon R134a adsorption. This unique pore topology leads to exceptional R134a uptake, ∼250 wt %, outperforming the highest uptake carbon material to date, Maxsorb III (∼220 wt %). Material characterizations reveal that the outstanding R134a capacity may be attributed to textural properties and oxygen-terminated functional groups more than graphitization of the material. Most importantly, HPCs are efficiently utilized in a two-bed model chiller device, where the performance shows excellent working capacity (105 wt %, ∼2 times the value of reported carbon materials/R134a). Fluorocarbon adsorption on HPCs also displays fast kinetics (equilibrium time: ∼2 min) mainly driven by physical adsorption (Qst: ∼27 kJ/mol), characteristic of swiftly reversible behavior adsorption-desorption behaviors. This work provides a fundamental understanding of the applicability of HPCs/R134a working pair for adsorption cooling.

7.
JACS Au ; 1(6): 766-776, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34467331

RESUMO

A key problem associated with the design of graphene oxide (GO) materials and their tuning for nanoscale separations is how specific functional groups influence the competitive adsorption of solvated ions and water at liquid/graphene interfaces. Computation accompanied by experiment shows that OH and COOH exert an influence on water adsorption properties stronger than that of O and H functional groups. The COO- anions, following COOH deprotonation, stabilize Pb(II) through strong electrostatic interactions. This suggests that, among the functional groups under study, COOH offers the best Pb(II) adsorption capacity and the ability to regenerate the sorbent through a pH swing. In line with computation, striking experimental observations revealed that a substantial increase in Pb(II) adsorption occurs with increasing pH. Our findings provide a systematic framework for controlled design and implementation of regenerable C-based sorbents used in separations and desalination.

8.
J Phys Chem Lett ; 12(38): 9360-9367, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34550703

RESUMO

Delineating intricate interactions between highly reactive Li-metal electrodes and the diverse constituents of battery electrolytes has been a long-standing scientific challenge in materials design for advanced energy storage devices. Here, we isolated lithium polysulfide anions (LiS4-) from an electrolyte solution based on their mass-to-charge ratio and deposited them on Li-metal electrodes under clean vacuum conditions using ion soft landing (ISL), a highly controlled interface preparation technique. The molecular level precision in the construction of these model interfaces with ISL, coupled with in situ X-ray photoelectron spectroscopy and ab initio theoretical calculations, allowed us to obtain unprecedented insight into the parasitic reactions of well-defined polysulfides on Li-metal electrodes. Our study revealed that the oxide-rich surface layer, which is amenable to direct electron exchange, drives multielectron sulfur oxidation (S0 → S6+) processes. Our results have substantial implications for the rational design of future Li-S batteries with improved efficiency and durability.

9.
mBio ; 12(4): e0144221, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34399620

RESUMO

Anaerobic gut fungi (Neocallimastigomycetes) live in the digestive tract of large herbivores, where they are vastly outnumbered by bacteria. It has been suggested that anaerobic fungi challenge growth of bacteria owing to the wealth of biosynthetic genes in fungal genomes, although this relationship has not been experimentally tested. Here, we cocultivated the rumen bacteria Fibrobacter succinogenes strain UWB7 with the anaerobic gut fungi Anaeromyces robustus or Caecomyces churrovis on a range of carbon substrates and quantified the bacterial and fungal transcriptomic response. Synthetic cocultures were established for at least 24 h, as verified by active fungal and bacterial transcription. A. robustus upregulated components of its secondary metabolism in the presence of Fibrobacter succinogenes strain UWB7, including six nonribosomal peptide synthetases, one polyketide synthase-like enzyme, and five polyketide synthesis O-type methyltransferases. Both A. robustus and C. churrovis cocultures upregulated S-adenosyl-l-methionine (SAM)-dependent methyltransferases, histone methyltransferases, and an acetyltransferase. Fungal histone 3 lysine 27 trimethylation marks were more abundant in coculture, and heterochromatin protein-1 was downregulated. Together, these findings suggest that fungal chromatin remodeling occurs when bacteria are present. F. succinogenes strain UWB7 upregulated four genes in coculture encoding drug efflux pumps, which likely protect the cell against toxins. Furthermore, untargeted nonpolar metabolomics data revealed at least one novel fungal metabolite enriched in coculture, which may be a defense compound. Taken together, these data suggest that A. robustus and C. churrovis produce antimicrobials when exposed to rumen bacteria and, more broadly, that anaerobic gut fungi are a source of novel antibiotics. IMPORTANCE Anaerobic fungi are outnumbered by bacteria by 4 orders of magnitude in the herbivore rumen. Despite their numerical disadvantage, they are resilient members of the rumen microbiome. Previous studies mining the genomes of anaerobic fungi identified genes encoding enzymes to produce natural products, which are small molecules that are often antimicrobials. In this work, we cocultured the anaerobic fungus Anaeromyces robustus or Caecomyes churrovis with rumen bacteria Fibrobacter succinogenes strain UWB7 and sequenced fungal and bacterial active genes via transcriptome sequencing (RNA-seq). Consistent with production of a fungal defense compound, bacteria upregulated genes encoding drug efflux pumps, which often export toxic molecules, and fungi upregulated genes encoding biosynthetic enzymes of natural products. Furthermore, tandem mass spectrometry detected an unknown fungal metabolite enriched in the coculture. Together, these findings point to an antagonistic relationship between anaerobic fungi and rumen bacteria resulting in the production of a fungal compound with potential antimicrobial activity.


Assuntos
Antibiose , Bactérias/genética , Fungos/genética , Fungos/fisiologia , Rúmen/microbiologia , Ovinos/microbiologia , Anaerobiose , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Fungos/classificação , Fungos/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Genoma Bacteriano , Genoma Fúngico , Técnicas Microbiológicas
10.
mBio ; 12(3): e0083221, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34061594

RESUMO

Anaerobic fungi (Neocallimastigomycota) isolated from the guts of herbivores are powerful biomass-degrading organisms that enhance their degradative ability through the formation of cellulosomes, multienzyme complexes that synergistically colocalize enzymes to extract sugars from recalcitrant plant matter. However, a functional understanding of how fungal cellulosomes are deployed in vivo to orchestrate plant matter degradation is lacking, as is knowledge of how cellulosome production and function vary throughout the morphologically diverse life cycle of anaerobic fungi. In this work, we generated antibodies against three major fungal cellulosome protein domains, a dockerin, scaffoldin, and glycoside hydrolase (GH) 48 protein, and used them in conjunction with helium ion and immunofluorescence microscopy to characterize cellulosome localization patterns throughout the life cycle of Piromyces finnis when grown on simple sugars and complex cellulosic carbon sources. Our analyses reveal that fungal cellulosomes are cell-localized entities specifically targeted to the rhizoids of mature fungal cells and bodies of zoospores. Examination of cellulosome localization patterns across life stages also revealed that cellulosome production is independent of growth substrate in zoospores but repressed by simple sugars in mature cells. This suggests that further exploration of gene regulation patterns in zoospores is needed and can inform potential strategies for derepressing cellulosome expression and boosting hydrolytic enzyme yields from fungal cultures. Collectively, these findings underscore how life cycle-dependent cell morphology and regulation of cellulosome production impact biomass degradation by anaerobic fungi, insights that will benefit ongoing efforts to develop these organisms and their cellulosomes into platforms for converting waste biomass into valuable bioproducts. IMPORTANCE Anaerobic fungi (Neocallimastigomycota) isolated from the guts of herbivores excel at degrading ingested plant matter, making them attractive potential platform organisms for converting waste biomass into valuable products, such as chemicals and fuels. Major contributors to their biomass-hydrolyzing power are the multienzyme cellulosome complexes that anaerobic fungi produce, but knowledge gaps in how cellulosome production is controlled by the cellular life cycle and how cells spatially deploy cellulosomes complicate the use of anaerobic fungi and their cellulosomes in industrial bioprocesses. We developed and used imaging tools to observe cellulosome spatial localization patterns across life stages of the anaerobic fungus Piromyces finnis under different environmental conditions. The resulting spatial details of how anaerobic fungi orchestrate biomass degradation and uncovered relationships between life cycle progression and regulation of cellulosome production will benefit ongoing efforts to develop anaerobic fungi and their cellulosomes into useful biomass-upgrading platforms.


Assuntos
Anaerobiose/fisiologia , Biomassa , Celulossomas/metabolismo , Piromyces/fisiologia , Anaerobiose/genética , Hidrólise , Piromyces/enzimologia
11.
Environ Sci Technol ; 55(9): 6320-6328, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33797230

RESUMO

Scandium (Sc) has great potential for use in aerospace and clean energy applications, but its supply is currently limited by a lack of commercially viable deposits and the environmental burden of its production. In this work, a biosorption-based flow-through process was developed for extraction of Sc from low-grade feedstocks. A microbe-encapsulated silica gel (MESG) biosorbent was synthesized through sol-gel encapsulation of Arthrobacter nicotianae, a bacterium that selectively adsorbs Sc. Microscopic imaging revealed a high cell loading and macroporous structure, which enabled rapid mass transport and adsorption/desorption of metal ions. The biosorbent displayed high Sc selectivity against lanthanides and major base metals, with the exception of Fe(III). Following pH adjustment to remove Fe(III) from an acid leachate prepared from lignite coal, a packed-bed column loaded with the MESG biosorbent exhibited near-complete Sc separation from lanthanides; the column eluate had a Sc enrichment factor of 10.9, with Sc constituting 96.4% of the total rare earth elements. The MESG biosorbent exhibited no significant degradation with regard to both adsorption capacity and physical structure after 10 adsorption/desorption cycles. Overall, our results suggest that the MESG biosorbent offers an effective and green alternative to conventional liquid-liquid extraction for Sc recovery.


Assuntos
Carvão Mineral , Poluentes Químicos da Água , Adsorção , Compostos Férricos , Concentração de Íons de Hidrogênio , Cinética , Micrococcaceae , Escândio , Sílica Gel
12.
ACS Omega ; 5(1): 104-112, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31956757

RESUMO

This work for the first time unfurls the fundamental mechanisms and sets the stage for an approach to derive electrocatalytic activity, which is otherwise not possible, in a traditionally known wide band-gap oxide material. Specifically, we report on the tunable optical properties, in terms of wide spectral selectivity and red-shifted band gap, and electrocatalytic behavior of iron (Fe)-doped gallium oxide (ß-Ga2O3) model system. X-ray diffraction (XRD) studies of sintered Ga2-x Fe x O3 (GFO) (0.0 ≤ x ≤ 0.3) compounds provide evidence for the Fe3+ substitution at Ga3+ site without any secondary phase formation. Rietveld refinement of XRD patterns reveals that the GFO compounds crystallize in monoclinic crystal symmetry with a C2/m space group. The electronic structure of the GFO compounds probed using X-ray photoelectron spectroscopy data reveals that at lower concentrations, Fe exhibits mixed chemical valence states (Fe3+, Fe2+), whereas single chemical valence state (Fe3+) is evident for higher Fe content (x = 0.20-0.30). The optical absorption spectra reveal a significant red shift in the optical band gap with Fe doping. The origin of the significant red shift even at low concentrations of Fe (x = 0.05) is attributed to the strong sp-d exchange interaction originated from the 3d5 electrons of Fe3+. The optical absorption edge observed at ≈450 nm with lower intensity is the characteristic of Fe-doped compounds associated with Fe3+-Fe3+ double-excitation process. Coupled with an optical band-gap red shift, electrocatalytic studies of GFO compounds reveal that, interestingly, Fe-doped Ga2O3 compound exhibits electrocatalytic activity in contrast to intrinsic Ga2O3. Fe-doped samples (GFO) demonstrated appreciable electrocatalytic activity toward the generation of H2 through electrocatalytic water splitting. An onset potential and Tafel slope of GFO compounds include ∼900 mV, ∼210 mV dec-1 (x = 0.15) and ∼1036 mV, ∼290 mV dec-1 (x = 0.30), respectively. The electrocatalytic activity of Fe-doped Ga-oxide compounds is attributed to the cumulative effect of different mechanisms such as doping resulting in new catalytic centers, enhanced conductivity, and electron mobility. Hence, in this report, for the first time, we explored a new pathway; the electrocatalytic behavior of Fe-doped Ga2O3 resulted due to Fe chemical states and red shift in the optical band gap. The implications derived from this work may be applicable to a large class of compounds, and further options may be available to design functional materials for electrocatalytic energy production.

13.
Environ Sci Technol ; 53(23): 13888-13897, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31702144

RESUMO

Rare earth elements (REEs) are indispensable components of many green technologies and of increasing demand globally. However, refining REEs from raw materials using current technologies is energy intensive and enviromentally damaging. Here, we describe the development of a novel biosorption-based flow-through process for selective REE recovery from electronic wastes. An Escherichia coli strain previously engineered to display lanthanide-binding tags on the cell surface was encapsulated within a permeable polyethylene glycol diacrylate (PEGDA) hydrogel at high cell density using an emulsion process. This microbe bead adsorbent contained a homogenous distribution of cells whose surface functional groups remained accessible and effective for selective REE adsorption. The microbe beads were packed into fixed-bed columns, and breakthrough experiments demonstrated effective Nd extraction at a flow velocity of up to 3 m/h at pH 4-6. The microbe bead columns were stable for reuse, retaining 85% of the adsorption capacity after nine consecutive adsorption/desorption cycles. A bench-scale breakthrough curve with a NdFeB magnet leachate revealed a two-bed volume increase in breakthrough points for REEs compared to non-REE impurities and 97% REE purity of the adsorbed fraction upon breakthrough. These results demonstrate that the microbe beads are capable of repeatedly separating REEs from non-REE metals in a column system, paving the way for a biomass-based REE recovery system.


Assuntos
Resíduo Eletrônico , Elementos da Série dos Lantanídeos , Metais Terras Raras , Adsorção , Imãs
14.
Langmuir ; 35(43): 13872-13879, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31589056

RESUMO

The functionality of magnetite, Fe3O4, for catalysis and spintronics applications is dependent on the molar ratio of Fe2+ and Fe3+ and their distribution at the surface. In turn, this depends on a poorly understood interplay between crystallographic orientation, dopants, and the reactive adsorption of atmospheric species such as water. Here, (100)-, (110)-, and (111)-oriented films of titano-magnetite, Fe(3-x)TixO4, were grown by pulsed laser deposition and their composition, valence distribution, magnetism, and interaction with water were studied by ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and X-ray magnetic circular dichroism. Although the bulk compositions match the desired stoichiometry, the surfaces were found to be enriched in Ti4+, especially the top 1 nm. The highest surface energy (110) film was the most reduced, tied to local Ti enrichment, and a corresponding decreased magnetic moment. AP-XPS showed that incorporation of x = 0.25 Ti dramatically lowered the propensity to form hydroxyl species at a given relative humidity, and also that hydroxylation is relatively invariant with orientation. In contrast, the affinity for water is similar across orientations, regardless of Ti incorporation, suggesting that relative humidity controls its uptake. The findings may help demystify the interactions that lead to specific distributions of Fe2+ and Fe3+ at magnetite surfaces, toward design of more deliberately active catalysts and magnetic devices.

15.
Inorg Chem ; 58(13): 8339-8346, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067043

RESUMO

One approach to reduce increasing concentrations of toxic per- and polyfluoroalkyl substances (PFAS) involves the capture of PFAS from aqueous media using porous materials. The use of highly porous, tunable metal organic framework (MOF) materials is appealing for targeted liquid phase sorption. In this work, we demonstrate the excellent capture of perfluorooctanesulfonate (PFOS) using both the chromium and iron analogs of the MIL-101 framework. Experimental characterization of PFOS uptake reveals unique differences in sorption properties between these two analogs, providing key implications for future PFOS sorbent design. Specifically, STEM-EDS and IR spectroscopy show definitive proof of sorption. Furthermore, XPS analysis shows evidence of a strong interaction between sulfur atoms of the polar headgroup of PFOS and the metal center of the framework in addition to the fluorinated nonpolar tail. Additionally, in situ 19F NMR reveals higher PFOS affinity for Cr-MIL-101 versus Fe-MIL-101 based on sorption kinetics. Surprisingly, at these relatively high PFOS concentrations, activated acetylene black carbon is severely outperformed by both MOFs.

16.
Chem Commun (Camb) ; 54(99): 13973-13976, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30480266

RESUMO

Nanoceria is considered as a potent antioxidant (free radical scavenger) and its enzymatic activity is reported to be a function of the oxidation state of surface cerium ions. Here we demonstrate phosphine ligand-dependent enzymatic activity of nanoceria irrespective of its as-synthesized oxidation state.


Assuntos
Catalase/metabolismo , Cério/farmacologia , Sequestradores de Radicais Livres/farmacologia , Nanopartículas Metálicas , Mimetismo Molecular , Fosfinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Ligantes , Oxirredução , Fosfinas/química , Fosfitos/química , Análise Espectral/métodos
17.
ChemSusChem ; 11(21): 3821-3828, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30180302

RESUMO

The very high specific capacity of Li metal makes it an ideal anode for high-energy batteries. However, Li dendrite growth and the formation of isolated (or "dead") Li during repeated Li plating/stripping processes leads to a low coulombic efficiency (CE). In this work, we discovered, for the first time, that electrode edge effects play an important role in the failure of Li-metal batteries. The dead Li formed on the edge of Cu substrate was systematically investigated through SEM, energy-dispersive X-ray (EDX) spectroscopy, and 2D X-ray photoelectron spectroscopy (XPS). To minimize the Li loss at the edge of the Cu exposed to pressure-free space, a modified Li∥Cu cell configuration with a Cu electrode smaller than Li metal is preferred. It was clearly demonstrated that using an electrode configuration with a minimal open space or pressure-free space across electrodes can reduce accumulation of dead Li during cycling and increase Li CE. This phenomenon was also verified in Li-metal batteries (Li∥LiNi1/3 Mn1/3 Co1/3 O2 ) and should be considered in the design of practical Li-metal batteries.

18.
J Colloid Interface Sci ; 513: 831-842, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29223890

RESUMO

Catalytically active individual gold (Au) and cerium oxide (CeO2) nanoparticles (NPs) are well known to exhibit specific enzyme-like activities, such as natural catalase, oxidase, superoxide dismutase, and peroxidase enzymes. These activities have been maneuvered to design several biological applications such as immunoassays, glucose detection, radiation and free radical protection and tissue engineering. In biological systems, multienzyme complexes are involved in catalyzing important reactions of essential metabolic processes such as respiration, biomolecule synthesis, and photosynthesis. It is well known that metabolic processes linked with multienzyme complexes offer several advantages over reactions catalyzed by individual enzymes. A functional nanozyme depicting multienzyme like properties has eluded the researchers in the nanoscience community for the past few decades. In the current report, we have designed a functional multienzyme in the form of Gold (core)-CeO2 (shell) nanoparticles (Au/CeO2 CSNPs) exhibiting excellent peroxidase, catalase, and superoxide dismutase enzyme-like activities that are controlled simply by tuning the pH. The reaction kinetic parameters reveal that the peroxidase-like activity of this core-shell nanozyme is comparable to natural horseradish peroxidase (HRP) enzyme. Unlike peroxidase-like activity exhibited by other nanomaterials, Au/CeO2 CSNPs showed a decrease in hydroxyl radical formation, suggesting that the biocatalytic reactions are performed by efficient electron transfers. A significant enzyme-like activity of this core-shell nanoparticle was conserved at extreme pH (2-11) and temperatures (up to 90 °C), clearly suggesting the superiority over natural enzymes. Further, the utility of peroxidase-like activity of this core-shell nanoparticles was extended for the detection of glucose, which showed a linear range of detection between (100 µM to 1 mM). It is hypothesized that the proximity of the redox potentials of Au+/Au and Ce (III)/Ce (IV) may result in a redox couple promoting the multienzyme activity of core-shell nanoparticles. Au/CeO2 CSNPs may open new directions for development of single platform sensors in multiple biosensing applications.


Assuntos
Materiais Biocompatíveis/química , Cério/química , Ouro/química , Peroxidase do Rábano Silvestre/metabolismo , Nanopartículas Metálicas/química , Complexos Multienzimáticos/metabolismo , Nanoestruturas/química , Catálise , Peroxidase do Rábano Silvestre/química , Imunoensaio , Complexos Multienzimáticos/química , Oxirredução
19.
Biotechnol Bioeng ; 115(4): 874-884, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29240224

RESUMO

The conversion of lignocellulose-rich biomass to bio-based chemicals and higher order fuels remains a grand challenge, as single-microbe approaches often cannot drive both deconstruction and chemical production steps. In contrast, consortia based bioprocessing leverages the strengths of different microbes to distribute metabolic loads and achieve process synergy, product diversity, and bolster yields. Here, we describe a biphasic fermentation scheme that combines the lignocellulolytic action of anaerobic fungi isolated from large herbivores with domesticated microbes for bioproduction. When grown in batch culture, anaerobic fungi release excess sugars from both cellulose and crude biomass due to a wealth of highly expressed carbohydrate active enzymes (CAZymes), converting as much as 49% of cellulose to free glucose. This sugar-rich hydrolysate readily supports growth of Saccharomyces cerevisiae, which can be engineered to produce a range of value-added chemicals. Further, construction of metabolic pathways from transcriptomic data reveals that anaerobic fungi do not catabolize all sugars that their enzymes hydrolyze from biomass, leaving other carbohydrates such as galactose, arabinose, and mannose available as nutritional links to other microbes in their consortium. Although basal expression of CAZymes in anaerobic fungi is high, it is drastically amplified by cellobiose breakout products encountered during biomass hydrolysis. Overall, these results suggest that anaerobic fungi provide a nutritional benefit to the rumen microbiome, which can be harnessed to design synthetic microbial communities that compartmentalize biomass degradation and bioproduct formation.


Assuntos
Celulases/metabolismo , Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Neocallimastix/enzimologia , Animais , Arabinose/análise , Arabinose/metabolismo , Celobiose/análise , Celobiose/metabolismo , Técnicas de Cocultura , Galactose/análise , Galactose/metabolismo , Glucose/análise , Glucose/metabolismo , Manose/análise , Manose/metabolismo , Neocallimastix/genética , Rúmen/microbiologia , Transcriptoma/genética
20.
Biotechnol Biofuels ; 10: 305, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29270219

RESUMO

Anaerobic gut fungi are the primary colonizers of plant material in the rumen microbiome, but are poorly studied due to a lack of characterized isolates. While most genera of gut fungi form extensive rhizoidal networks, which likely participate in mechanical disruption of plant cell walls, fungi within the Caecomyces genus do not possess these rhizoids. Here, we describe a novel fungal isolate, Caecomyces churrovis, which forms spherical sporangia with a limited rhizoidal network yet secretes a diverse set of carbohydrate active enzymes (CAZymes) for plant cell wall hydrolysis. Despite lacking an extensive rhizoidal system, C. churrovis is capable of growth on fibrous substrates like switchgrass, reed canary grass, and corn stover, although faster growth is observed on soluble sugars. Gut fungi have been shown to use enzyme complexes (fungal cellulosomes) in which CAZymes bind to non-catalytic scaffoldins to improve biomass degradation efficiency. However, transcriptomic analysis and enzyme activity assays reveal that C. churrovis relies more on free enzymes compared to other gut fungal isolates. Only 15% of CAZyme transcripts contain non-catalytic dockerin domains in C. churrovis, compared to 30% in rhizoid-forming fungi. Furthermore, C. churrovis is enriched in GH43 enzymes that provide complementary hemicellulose degrading activities, suggesting that a wider variety of these activities are required to degrade plant biomass in the absence of an extensive fungal rhizoid network. Overall, molecular characterization of a non-rhizoid-forming anaerobic fungus fills a gap in understanding the roles of CAZyme abundance and associated degradation mechanisms during lignocellulose breakdown within the rumen microbiome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...